

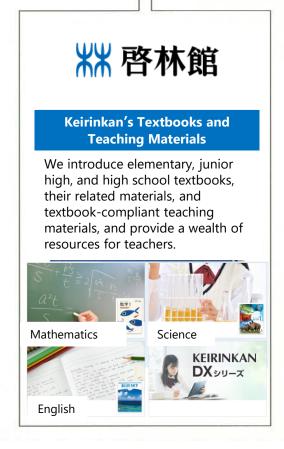
KEIRINKAN

Smart Lecture

Math Proficiency Improvement Project Using Japanese Style ICT Tool

March 3, 2023

KEIRINKAN
© 2023 KEIRINKAN All Rights Reserved


Toshiki OKAMURA
General Manager
School Business Planning Dept.

Shinko Shuppansha Keirinkan Co., Ltd.

Shinko Shuppansha Keirinkan Co., Ltd. offers a wide range of educational materials from infants to high school students with its three brands: Keirinkan for textbooks, Shinko Shuppansha for textbook-compliant exercise books, and Bunken Shuppan for children's books.

Area of Activity

City of Cagayan de Oro

Northern Mindanao

Counterpart:

Department of Education, City of Cagayan de Oro

Population: 675,950 (in 2015)

Flight: 4-5 hours to Manila, 1 hour from Manila

Language: English and Visayan

Former President Duterte was Mayor of Davao City, Mindanao.

Status of Arithmetical and Mathematical Proficiency in the Philippines

487

Ranked 41st out of 45 countries in the 2003 TIMSS survey Ranked 77th out of 78 countries in the 2018 PISA survey

OECD average

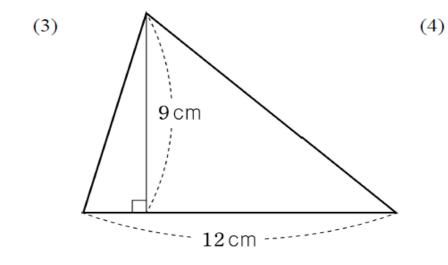
78

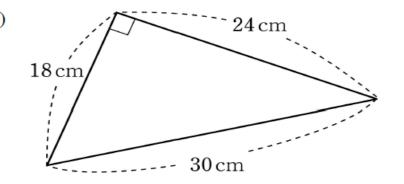
Mathematical literacy in the 2018 PISA survey						
71	Panama		377			
72	Indonesia		371			
73	Morocco		359			
74	Lebanon*		353			
75	Kosovo		353			
76	The Dominican Republic		342			
77	The Philippines		340			

Li	多考】2018年調宜	の国際氏	,取(3万野の結果一)	見)		
	読解力	平均 得点	数学的リテラシー	平均得点	科学的リテラシー	平均 得点
1	北京·上海·江蘇·浙江	555	北京·上海·江蘇·浙江	591	北京·上海·江蘇·浙江	590
2	シンガポール	549	シンガボール	569	シンガボール	551
3	マカオ	525	マカオ	558	マカオ	544
4	香港	524	香港	551	エストニア	530
5	エストニア	523	台湾	531	日本	529
6	カナダ	520	日本	527	フィンランド	522
7	フィンランド	520	韓国	526	韓国	519
8	アイルランド	518	エストニア	523	カナダ	518
9	韓国	514	オランダ	519	香港	517
10	ボーランド	512	ボーランド	516	台湾	516
11	スウェーデン	506	スイス	515	ボーランド	511
12	ニュージーランド	506	カナダ	512	ニュージーランド	508
13	アメリカ	505	デンマーク	509	スロベニア	507
14	イギリス	504	スロベニア	509	イギリス	505
15	日本	504	ベルギー	508	オランダ	503
16	オーストラリア	503	フィンランド	507	ドイツ	503
17	台湾	503	スウェーデン	502	オーストラリア	503
18	デンマーク	501	イギリス	502	アメリカ	502
19	ノルウェー	499	ノルウェー	501	スウェーデン	499
k		400	379	500	Caudi Arabia	*

Argentina* —————	0,0	
Indonesia	379	L
Saudi Arabia*	373	(
Morocco	368	١
Kosovo	366	k
Panama	353	F
The Philippines	353]
The Dominican Republic	325	•
OECD average	489	1
アラブ首長国連邦 432 セルビア	448	セル

スウェーデン 499	
Saudi Arabia*	386
Lebanon*	384
Georgia	383
Morocco	377
Kosovo	365
Panama	365
The Philippines	357
The Dominican Republic	336
OECD average	489


JECD averag	ge •	アラブ首長国連邦	432	セルビア	448	セルヒア	440
1		ルーマニア※	428	マレーシア	440	キプロス	439
	48	ウルグアイ	427	アルバニア	437	マレーシア	438
	49	コスタリカ	426	ブルガリア	436	アラブ首長国連邦	434
	50	キプロス	424	アラブ首長国連邦	435	ブルネイ	431
	51	モルドバ※	424	ブルネイ	430	ヨルダン※	429
	52	モンテネグロ	421	ルーマニア※	430	モルドバ※	428
	53	メキシコ	420	モンテネグロ	430	タイ	426
	54	ブルガリア	420	カザフスタン	423	ウルグアイ	426
	55	ヨルダン※	419	モルドバ※	421	ルーマニア※	426
	56	マレーシア	415	バクー(アゼルバイジャン)	420	ブルガリア	424
	57	ブラジル	413	タイ	419	メキシコ	419
	58	コロンビア	412	ウルグアイ	418	カタール	419
	59	ブルネイ	408	チリ	417	アルバニア	417
	60	カタール	407	カタール	414	コスタリカ	416
	61	アルバニア	405	メキシコ	409	モンテネグロ	415
	62	ボスニア・ヘルツェゴビナ	403	ボスニア・ヘルツェゴビナ	406	コロンビア	413
	63	アルゼンチン※	402	コスタリカ	402	北マケドニア※	413
	64	ベルー	401	ベルー	400	ベルー	404
	65	サウジアラビア※	399	ヨルダン※	400	アルゼンチン※	404
	66	タイ	393	ジョージア	398	ブラジル	404
	67	北マケドニア※	393	北マケドニア※	394	ボスニア・ヘルツェゴビナ	398
	68	バクー(アゼルバイジャン)	389	レバノン※	393	バクー(アゼルバイジャン)	398
	69	カザフスタン	387	コロンビア	391	カザフスタン	397
		/- //	300	11111	304	721.427	330
	71	パナマ	377	アルゼンチン※	379	サウジアラビア※	386
	72	インドネシア	371	インドネシア	379	レバノン※	384
	73	モロッコ	359	サウジアラビア※	373	ジョージア	383
	74	レバノン※	353	モロッコ	368	モロッコ	377
	75	コソボ	353	コソボ	366	コソボ	365
	76	ドミニカ共和国	342	パナマ	353	パナマ	365
I L	77	フィリピン	340	フィリピン	353	フィリピン	357
@ 20b	78			ドミニカ共和国	325	ドミニカ共和国	336
© 20 r		OECD平均	487	OECD平均	489	OECD平均	489


Status of Mathematical Proficiency in the Philippines

<Challenges in mathematics education in the Philippines>

- Classes at school include singing songs and answering questions in unison, making them fun. (May not be suited for academic development?)
- The curriculum is not as systematic as in Japan. (There are topics for which the educational intent is not clear.)
- The content of classes up to high school in Japan is crammed into the first 10 grades. (Progress is faster than in Japan.)
- Problems use numeric values that take a long time to calculate. (Time consuming to handle in class.)
- Math test in National Achievement Test is in the form of multiple-choice questions. (Can be answered without thinking it through.)
- Problems require memorization of terms and can be solved by substituting values into a formula. (Do not learn to think.) => In contrast, mathematical ways of thinking are taught in detail in Japan (e.g., the concept of the base and height of a triangle).
- Lesson studies among teachers are rarely held.
- 2 Find the area of each of the following triangles.

(3) (4)
Correct answers 80% 40%

Both are 100% in Japan

(Answer)

(Answer)

216

Pages from a Philippine textbook

There is little explanation of the way of thinking that leads to formulas.

Study the Model Vollo perA ent guibnik

Let us recall how to get the area of a rectangle. We learned that to get the area, we multiply the length and width of a rectangle.

Let us get the area of the rectangle at the right:

4 units \times 3 units = 12 square units

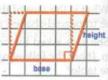
Look at what happens when we cut the rectangle diagonally. We form two triangles!

Thus, we can say that the area of a triangle is actually one-half the area of a rectangle. We call the width the base of the triangle and the length, its height. We can write our equation this way:

Area of a triangle = $\frac{1}{2} \times \text{base } x$ height

Using the same dimensions of the given triangle, we write

Area of a triangle = $\frac{1}{2} \times 3$ units $\times 4$ units


Area of a triangle = $\frac{1}{2} \times 12 \text{ units}^2$

Area of a triangle = 6 units2

We learned in a previous lesson that a parallelogram is a four-sided figure that has two opposite sides which are parallel. A rectangle and square can be considered parallelograms.

When we get the area of a rectangle, we multiply the length and width of the shape.

Looking at the parallelogram at the right, we can see a square in the middle of the figure and two triangles can be seen along the slanted sides.

How is getting the area of a parallelogram similar to getting the area of a rectangle?

To get the area of a parallelogram, we use the measurement of the base and height, like getting the area of a triangle. We multiply the base and height of the parallelogram to get its area.

Remember that the base and height should always be perpendicular to each other.

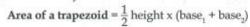
To solve for the area of the parallelogram window, we use this equation:

Area of a parallelogram = base x height

Area of a parallelogram = 15 inches x 9 inches

Area of a parallelogram = 135 inches²

15


The parallelogram window has an area of 135 square inches.

Can you see how a triangle, parallelogram, and trapezoid can be related to a square or rectangle when finding their areas?

Now, let's try working on the area of a trapezoid.

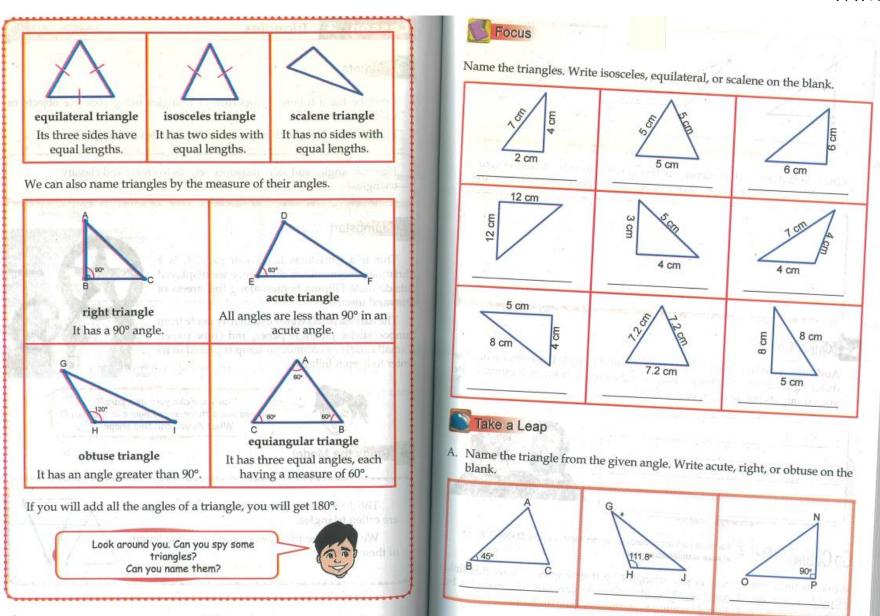
The area of a trapezoid is half the product of the height and the sum of its bases. We write the equation this way:

To solve for the area of the trapezoid window, we use the given facts:

Area of a trapezoid = $\frac{1}{2}$ height x (base₁ + base₂)

Area of a trapezoid =
$$\frac{1}{2}$$
 (9 in) x (9 in + 15 in)

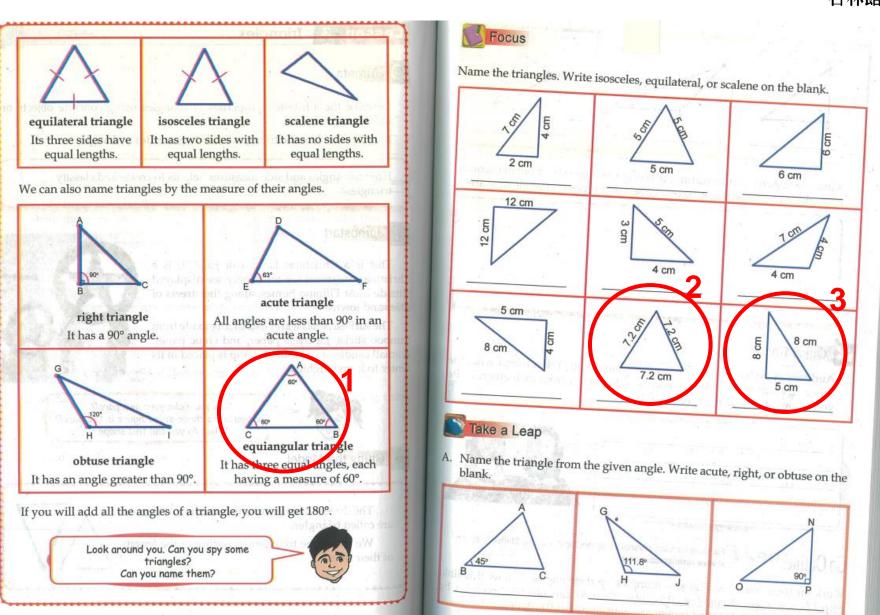
Area of a trapezoid = 108 inches2


We have two bases in a trapezoid because the parallel sides are **not** equal in length.

Pages from a Philippine textbook

Questions asking the names of triangles

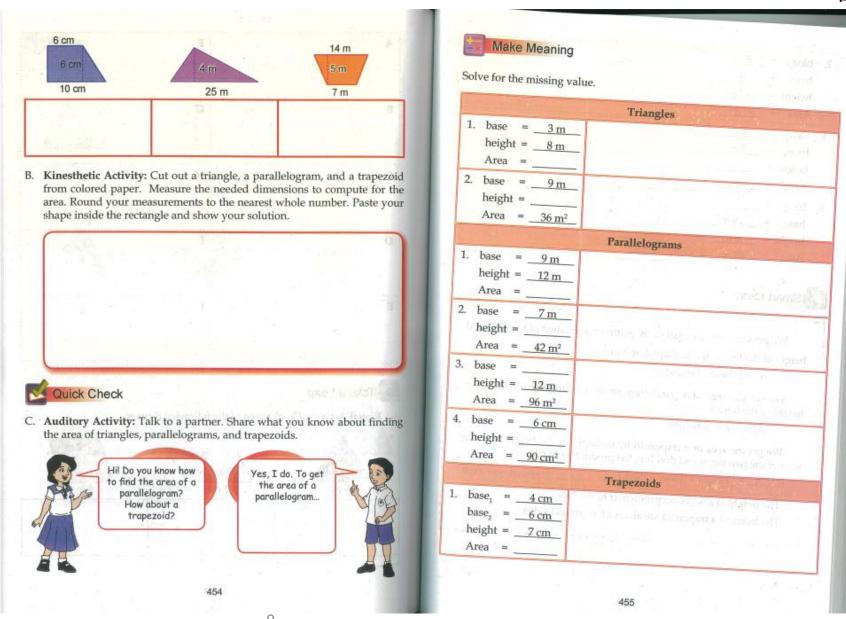
An example of rote learning. A double-page spread is devoted to this content. Some terms, such as acute triangles and obtuse triangles, are not dealt with in Japan.



Pages from a Philippine textbook

Some diagrams are not very accurate.

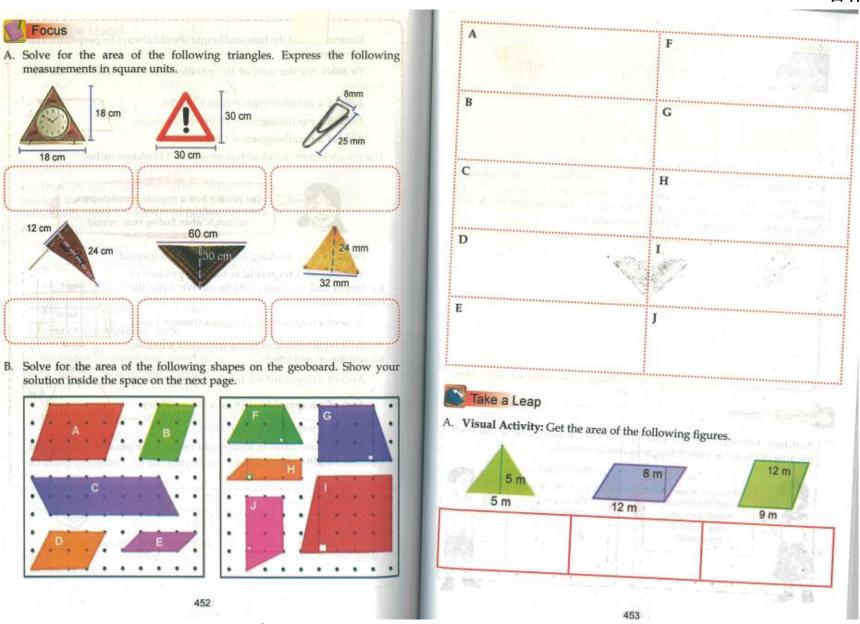
- 1. Angles B and C of this equilateral triangle are slightly smaller.
- 2. Each side of this equilateral triangle should be 7.2cm but the base is shorter.
- 3. The left side of what looks to be a right-angled triangle is 8cm but the hypotenuse is also denoted as 8cm?


Α ,

Pages from a Philippine textbook

An example of rote learning. Calculation problems can be solved by simply applying a formula.

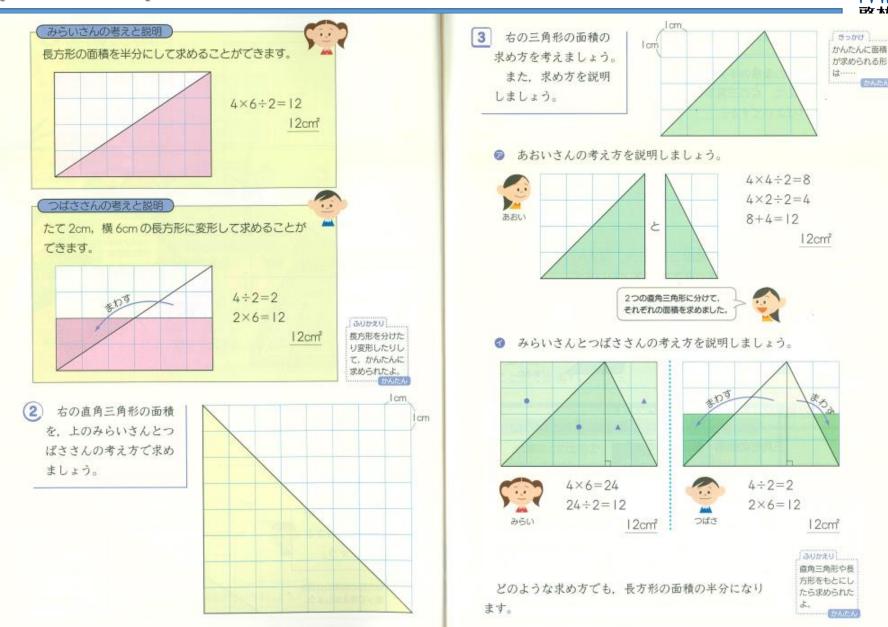
Simply memorizing the formula enables the students to solve the problem.



Pages from a Philippine textbook

An example of rote learning. Calculation problems can be solved by simply applying a formula.

Simply memorizing the formula enables the students to solve the problem.

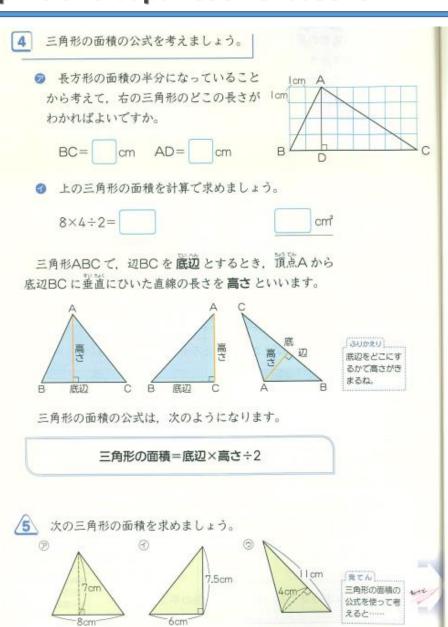


Pages from a Japanese textbook

Many pages are devoted to how to think through to find the area of a triangle.

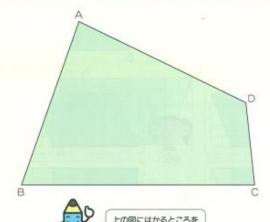
Two ways of thinking are explained to show that the area can be determined by either method. Then, a generalized approach is presented.

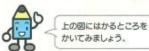
1


5

Pages from a Japanese textbook

The textbook explains the concept of base and height to make the students think.


These problems not only make students calculate but also make them think and devise their own methods.



●●●練習 ◆ 108ページ 517

面積の公式を使って

下の四角形の面積をくふうして求めましょう。

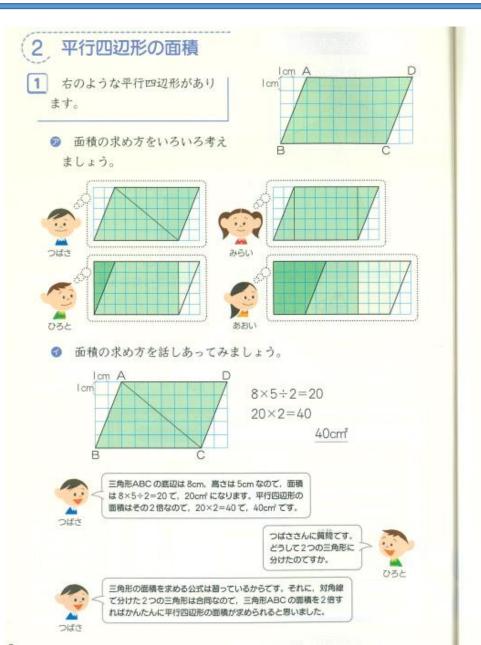
四角形の面積は、対角線で 2つの三角形 に分けて求め ることができます。

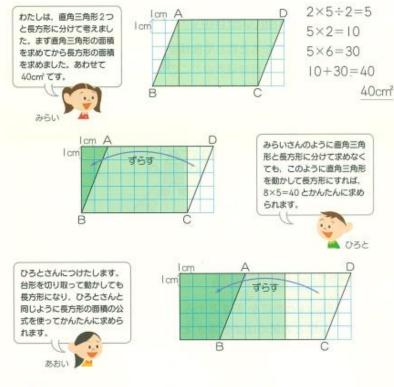
2つの三角形に 分ける求め方が いちばんかんた せんたん

いろいろな形の面積

公園などの土地の 面積を求めるために 測量では右下のよう な三角形に分けた図 を使います。

このように,直線 で囲まれた形の面積 は、三角形に分ける


题 想】 三角形の面積の 公式を使えば、 四角形の面積を 求められるので 便利です。五角 形の面積も考え てみたいです。



Pages from a Japanese textbook

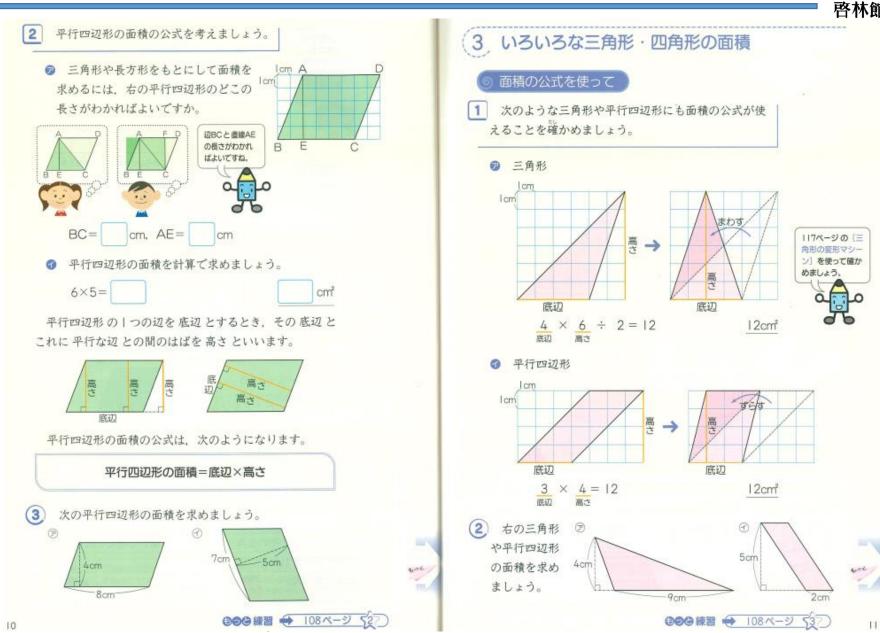
Students are asked to think through how to find the area of a triangle based on what they have already learned.

The emphasis is on application and systematization of what has been learned so far.

話しあってよかったことをノートにかきましょう。

三角形に分けると、2つ分の 面積を求めないといけないの で大変だと考えていました。 でも、つばささんの説明で、 平行四辺形が対角線で合同な 三角形に分けられ、その三角 形の面積を2倍すればよいこ とがわかりました。

平行四辺形を分けるだけでな く、面積の公式を知っている 長方形に形を変える考えがあ ることがわかりました。ひろ とさんの説明やあおいさんの 説明を聞いて考えが広がりま した。


ひろと

Pages from a Japanese textbook

Students are asked to think through based on what they have already learned: how to find the area of a triangle (application and systematization).

The concept of height and base of a triangle is extended to the concept of height and base of a parallelogram.

https://smart-lecture.com/

※ 啓林館 ●新興出版社 ▶ 文研出版の教科書・問題集・参考書が

動画授業で学び放題・見放題!

スマートレクチャ・

ログイン

お問い合わせ

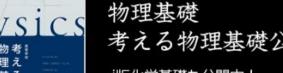
考える物理基礎公開

i版化学基礎も公開中!

AccelReading (英語版)

教科書 中学校教科書 ぴったりトレーニング トレーニング

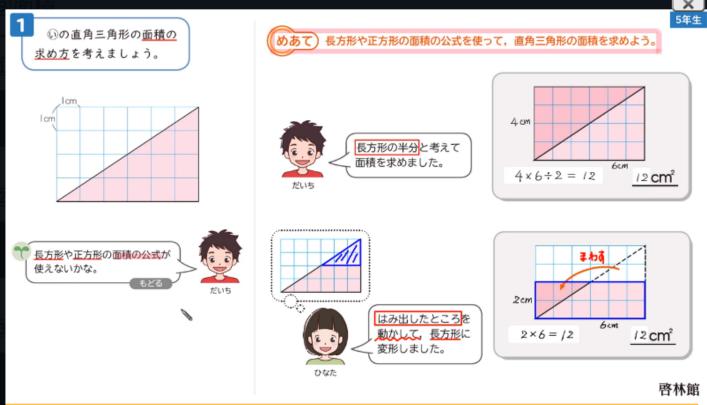
新編数学 😿 🙀


(高校

Fリル 主様 ドリルの王様 楽しいプログラミング

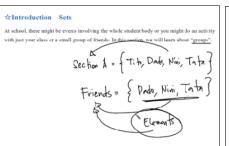
料書じたりにか 小学校教科書びったりトレーニング

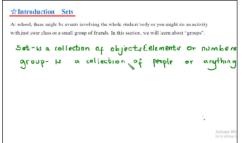
サントにわかる2022年度版 ホントにわかる2022年度版



About Smart Lecture

Video materials with hand-drawn and voice-over explanations of our paper-based textbooks and teaching materials

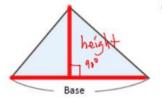

About Smart Lecture



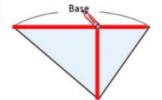
Using Smart Lecture, an Englishtranslated version of our paper-based materials was used to explain in English and the local language (Visayan).

Visayan

1-3


· Basics of plane figures

Practice


Triangle

For each triangle, if the base of the triangle is as below, where is the height? Draw on the figures

KEIRINKAN

Features

1. Paper-Digital Hybrid

2. Language Options

Explanatory video in English and Visayan

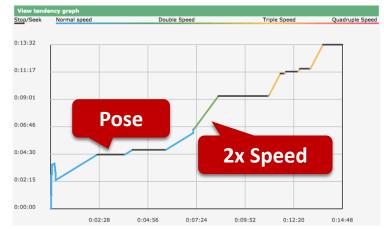
3. Compact Data Size

4. Easy Management Tool

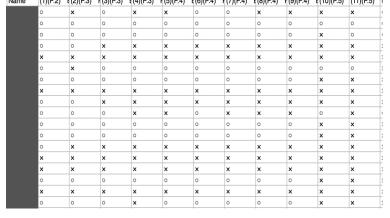
Teachers can manage their students using LMS

5. Portable

Lectures are accessible anytime, anywhere.


3. Compact Data Size

- Video size is only 10 MB for 15 minutes.
- Accessible from any network environment such as from school home.


4. Easy Management Tool

Teachers can manage their students using LMS

- LMS (Learning Management System)
- Easy to grasp the learning and progress of students by LMS

Tendency Graph

Progress List

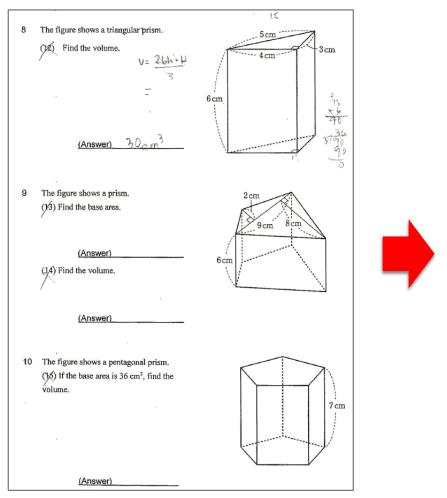
Activities in the City of Cagayan de Oro

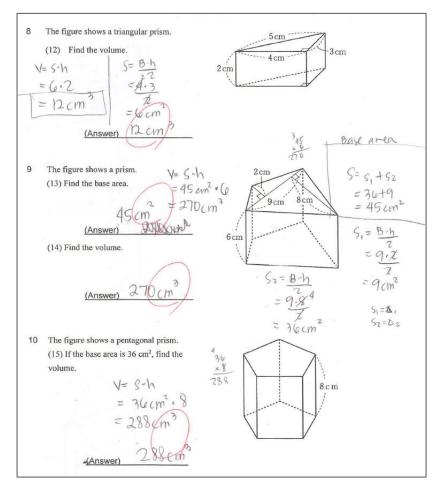
		一
Time	Activity subject	Main destinations
Sep. 2015	Preliminary investigation	DepED of CDO, NHS, etc.
Oct. 2016	Launch of JICA's first project	DepED of CDO, GUSA Regional Science HS, Xavier University HS
Jan. 2017	Training in Japan	Higashiyama High School, JICA Kansai, Keirinkan Head Office
Feb.	Smart Lecture learning, pre-test, and post-test	City Hall of CDO, DepED of CDO, GUSA Regional Science HS, Xavier University HS
May	Smart Lecture conference and results sharing	DepED, DepED of CDO, GUSA Regional Science HS, Xavier University HS
Sep. 2018	Preliminary investigation	DepED of Region-X, DepED of CDO, GUSA Regional Science HS, Xavier University HS
Oct.	Launch of JICA's second project	DepED of Region-X, DepED of CDO, GUSA Regional Science HS, Xavier University HS
Mar. 2019	Pilot school meeting	DepED of CDO, GUSA Regional Science HS, Xavier University HS
May	Kick-off conference	DepED of CDO, GUSA Regional Science HS, Xavier University HS
Oct.	Workshop	DepED of CDO, GUSA Regional Science HS
Nov.	Training in Japan	Higashiyama High School, Osaka Kyoiku University Hirano High School, Sumoto High School, JICA Kansai, Keirinkan Head Office
Feb. 2020	On-site investigation COVID	DepED of CDO, GUSA Regional Science HS
Mar. 2021	CDO online conference -19	DepED of CDO, Schools, educational institutions in CDO
Jul. 2022	Cebu online conference	DepED of CDO, Schools, educational institutions in Cebu
Jul. 2022	On-site investigation	DepED of Php, DepED of CDO, DepED of Cebu, GUSA Regional Science HS, Xavier University HS, Bulua NHS, etc.
Oct. 2022	Smart Lecture conference and results sharing	DepED of CDO, GUSA Regional Science HS, Xavier University HS, Schools, educational institutions in CDO

Smart Lecture in Operation

School	Public Gusa High School	Private Xavier High School
Use	Used in classes	For school use and home study
Device Environment	One student per computer in the computer room.	The teacher uses a screen in front of the class to teach the class collectively.
Internet Environment	Content viewed offline.	Content viewed online.
Study Flow	One set of learning consist of three periods. Students watch about two Smart Lecture videos in the first period, work on exercises on Smart Lecture in the second period, and in the last period, students use government-designated textbooks as supplemental material and for discussions.	Students access online content and watch sections not covered in class or sections they want to review from home. Teachers track students' access via Smart Lecture (LMS).
Classes Images		EXCELLENCE: † WAY OF LIFE

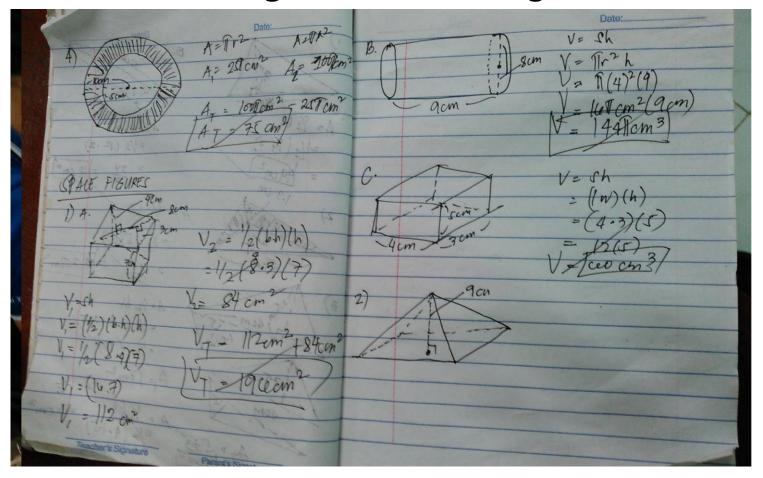
Scenes of Smart Lecture learning and commemorative photos taken at the end of the demonstration project





Pilot Project Results

Changes in student answers


Pre-test

Post-test

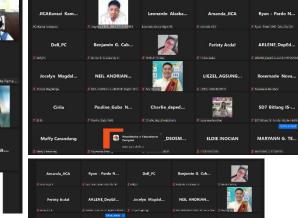
The process of solving the problem is now properly described.

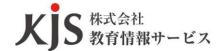
There was also a change in note-taking.

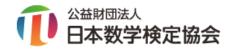
The concept and process of solving the problem were described.

Conference in CDO Sharing the report of the pilot "Smart Lecture" method and its results.

Results Sharing



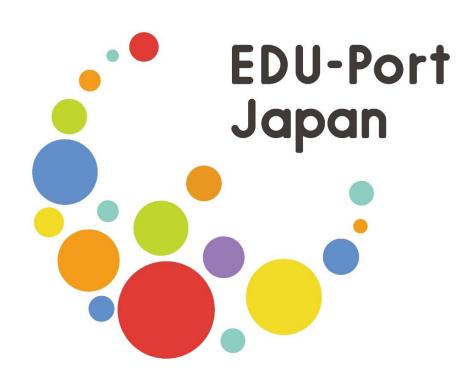




Japan International Cooperation Agency

- KJS -

Education ICT company in Japan which provides learning management system



Suken –
 Public Interest Incorporated Foundation for
 Mathematic Certification Program and Examination in
 Japan

- E-education -Japanese NPO which provides film education to the world

Adopted as a EDU-Port Japan Supported Project of the Ministry of Education, Culture, Sports, Science and Technology of Japan on June 27, 2022.

[Philippines] 2022 EDU-Port Japan Supported Project

A Wifi router was installed on a wall of a public school (October 2022).

Post-COVID class (October 2022)

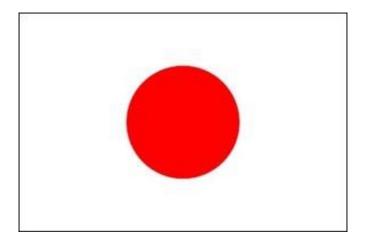
Students are in class looking at assignments on their smartphones. There is not one textbook in the group.

Japanese-style mathematics in your hands

SmartLecture ebook

video&ebook

[Philippines] 2022 EDU-Port Japan Supported Project



Continue to be a bridge between the Philippines and Japan through education

Thank you for your attention

